ESTIMATING UNCONVENTIONAL GAS IN PLACE, RESOURCES & RESERVES
1. Introduction to ERC
2. Defining Unconventional Gas
3. Going from “Play” to “Reserve”
4. Understanding the Reservoir
5. Conclusions
1. Introduction to ERC
ERC since 2003

Reservoir Evaluation Consulting

- A&D Services
- Reservoir Technical Advisory Services
- Reserves and Resources Evaluation
- Commercial Advisory
- Reservoir Simulation
- Geology and Geophysical Analysis
- Expert Witness Testimonials

Sponsors:
- Centrica
- Cairn
- Revus Energy
- Petro Summit
- Caithness Petroleum
- Tullow Oil
- Hydro
- Kerr McGee
ERC – The Principals

Simon McDonald, CENG
Managing Director

David Wilson, FIMMM
Chairman

Paul Chernik, Cdn P.Eng
B.D. Manager
Paul Chernik
Unconventional Experience

HEAVY OIL

TIGHT OIL

TIGHT GAS

OIL SANDS

H₂S

WEST ENERGY Ltd.

DAYLIGHT RESOURCES TRUST

Encana

PennWest ENERGY

CURRENAY OIL CORP.

Shell

MIDNIGHT Oil Exploration Ltd.

Syncrude
2. Defining Unconventional Gas
“Tight Gas” is a relative term. In today’s talk, “Tight Gas” will mean when you drill and only perforate there is negligible gas flow at uneconomic rates and volumes due to low permeabilities. Permeabilities are typically in the microdarcy to nanodarcy ranges.
Key Characteristics

- Gas flow from the rock comes from either:
 - Free Gas within gas filled porosity (Sandstones)
 - Adsorbed Gas within Organic Material (Coals)
 - A combination of the two (Shale)

- Unconventional gas reservoirs need advanced fracture stimulation:
 - Types: Vertical Limited Entry, Multi-Stage Horizontal, etc.
 - Size: Large sand volumes (ex. 400 tons in a single stage; up to 20 stages per well)
 - Fracture Propagations: “Cloud” vs “Bi-Wing” fractures

- Different stimulation techniques apply to different reservoir types.
3. Going from “Play” to “Reserve”
PRMS – Project Maturity

Source: PRMS 2007
Moving from a Play to a Reserve

- **Prospective Resource** "Play"
- **Contingent Resource** "Development Unclarified or On Hold"
- **Contingent Resource** "Development Pending"
- **Reserves** "On Production"
- **Reserves** "Non-Producing Locations"

- No Detailed Reservoir Information
- Vertical Appraisal Wells, Geological Interpretation Complete, OGIP Calculated
- Have artifically stimulated wells and demonstrated significant and sustained gas flow
- Have proven commerciality of individual wells
- Understand production mechanism and apply to future development locations
4. Understanding the Unconventional Reservoir
Review of Conventional Prospects

- Conventional Traps:
 - Structurally or Stratigraphically defined within a contained area.
 - Risks include source, seal, reservoir trap and commerciality
 - Can be often be delineated using seismic
 - Other than in extreme environments (Arctic, ultra–deepwater, etc.) there is little to no technology risk

Source: Equipoise Solutions, Adam Law
Unconventional Gas Assets

- Heterogeneous accumulations pervasive over large regions
- Reservoir changes sometimes happen gradually (over kilometres), and other times very quickly (over metres)
- Risks are reservoir quality, rock properties, hydrocarbon fluid type, technology and commerciality
- Reservoir variation often cannot be resolved with seismic
- Typically, not every part of the reservoir will be economically viable using existing technologies
“drillinginfo” a US based company analysed the public data from the Barnett Shale, and used pay thickness & producing GOR (as a thermal maturity indicator) to rank Barnett acreage.

- Orange and Red are sub-economic.
Normalised Barnett Production Curves

BARNETT SHALE - AVERAGE HORIZONTAL TYPE CURVE BY GRADE (2500-3500' LAT)

<table>
<thead>
<tr>
<th>GPA</th>
<th>MaxIP</th>
<th>EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2000</td>
<td>6.58</td>
</tr>
<tr>
<td>E</td>
<td>1600</td>
<td>2.46</td>
</tr>
<tr>
<td>H</td>
<td>800</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Source: drillinginfo, Romana K. Hovey
While sandstones, shales and coals are very different rocks, the process for defining the geology is similar

1. Identify the areal extent of the formation/play
2. Understand the regional geology and depositional environment
3. Drill vertical appraisal wells to take core, cutting samples and logs. Drill enough wells to have triangulation and to identify reservoir transitions within the acreage. Take Pressures.
4. Complete core and cuttings studies to identify geology, mineralogy, geochemical, petrophysical and geomechanical properties, and rock–fluid compatibility
5. Correlate logs to core, and then use all available data to generate geological mapping and to verify the regional geological and sedimentological models
Well Control, Triangulation & Defining the Reservoir
The final geological model combines:
- Seismic
- Sedimentological Model
- Core–correlated Well Log information
- Rock properties

By identifying and understanding discrepancies in the various analytical tools, the unconventional resource model can be understood and finalised.

After geological analysis, future development can now be risked at a “Contingent Resource – Development Unclarified” Level.
Why All The Preliminary Work?

- Unconventional activities in the US, Canada and elsewhere have taught us many lessons, and provide many analogies.
- Some unconventional reservoirs have been economic successes:
 - Portions of the Barnett/Haynesville/Montney Shales
 - Much of the Cutbank Cadomin sandstone
 - Much of the Horseshoe Canyon CBM
- Others have been economic failures:
 - Much of the Floyd/Conasauga/Chattanooga Shales
 - Portions of the Deep Basin Wild River region
 - Portions of the Mannville CBM
- By understanding the geology, we can determine what information from analogies carries over, and gain a better understanding of the unique risks of the reservoir and acreage under investigation.
Some Key Questions

- What is the Original Gas In Place (OGIP)?
 - In Shales and Coals, OGIP cannot in any way be determined without lab studies.
 - Total OGIP is a function of the free gas and adsorbed gas components.
 - After logs are calibrated to core, then you can begin to map OGIP.
 - Very useful are “OGIP/unit area” maps, where you can see how the OGIP varies across the play. These maps take into account the storage mechanisms and the net thickness.
 - In Sandstones, core studies are not an absolute requirement. But they are highly recommended.
Some Key Questions Continued

- What else do I need to think about when conducting the geological analysis?
 - Thermal Maturity
 - Identifying whether you are in the gas, condensate or oil window is important
 - **Phase II, Applying Technology.** The rock must be fracture stimulated, often using massive frac jobs.
 - Clay, Quartz and Carbonate content are key
 - Presence of mobile water either above or below must always be considered
 - Must be aware of natural fractures and how they will impact your frac job in both positive and negative ways
 - Are there natural frac barriers?
 - Must think about water supply, disposal (ultimately could be 100’s of millions of barrels)
5. Conclusions
Unconventional reservoirs have the potential to be important parts of a company’s portfolio of assets.

The process from play to reserves involves:

- Technical studies and calculations based on well control
- Proof of a company’s ability to identify and apply well technology that creates sustained significant gas production
 - Initial Production rates and long term decline profiles will define success or failure
- Demonstration that wells being drilled and completed by a company are economic

It is a lengthy process, with many steps, milestones and contingencies.

Companies should use the project maturity sub-categories in the PRMS and additional explanations to accurately describe where they are in the process. The market should look for those descriptions.
ERC Contact Details

United Kingdom Office

ERC Energy Resource Consultants
Albany House, Market Street
Maidenhead, Berks, UK
SL6 8BE
Phone: +44 (0)16 2842 1898
Fax: +44 (0)16 2842 1899

Simon McDonald, CENG
Managing Director
Direct Line: +44 (0)16 2842 1873
Mobile: +44 (0)7 831 277 620
Email: smcdonald@ercconsultants.com

Paul Chernik, Cdn. P.Eng
Business Development Manager
Direct Line: +44 (0)16 2842 1874
Mobile: +44 (0)7 825 596 640
Email: pchernik@ercconsultants.com

United Arab Emirates Office

ERC Energy Resource Consultants
PO Box 73792
Dubai
United Arab Emirates
Phone: +9714 366 3051
Fax: +9714 366 3052

David Wilson, FIMMM
Chairman
Mobile: +9715 0654 7313
Email: dwilson@ercconsultants.com

www.ercconsultants.com